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ABSTRACT

A tungsten alloy wire reinforced high temperature alloy composite is being
developed for potential application as a hollow turbine blade for the advanced
rocket engine turbopumps. The W-24Re-HfC alloy wire used for these composite
blades provides an excellent balance of strength and wire ductility. Prelimi-
nary fabrication, specimen design, and characterization studies were conducted
by using commercially available W218 tungsten wire in place of the W-24Re-HfC
wire. Subsequently, two-ply, 50 volt composite panels using the W-24Re-HfC
wire were fabricated. Tensile tests and metallographic studies were performed
to determine the material viability. Tensile strengths of a Waspaloy matrix
composite at 870 °C were 90% of the value expected from rule-of-mixtures calcu-
lations. During processing of this Waspaloy matrix composite, a brittle phase
was formed at the wire/matrix interface. Circumferential wire cracks were
found in this phase. Wire coating and process evaluation efforts were per-
formed in an attempt to solve the reaction problem. Although problems were
encountered in this study, wire reinforced high temperature alloy composites
continue to show promise for turbopump turbine blade material improvement.

INTRODUCTION

The Space Shuttle Main Engine (SSME) is the most advanced reusable rocket
engine in service. Its high pressure turbopump turbine blades operate in a
very challenging environment of high pressure steam and hydrogen. During the
development and early operation of the SSME, the durability of these blades was
limited to only a few engine firing cycles. Table 1 compares thermal transient
data as well as several other characteristics of both rocket and aircraft
engines. The high heat transfer coefficient resulting from the high pressure
gas causes extremely severe thermal transients in the blade material. In addi-
tion, the gas bending loads, as suggested by the high power extraction per
blade, causes high steady state loads compared to aircraft engines. While
many of the problems which limited the life of the blades have been minimized,
their occurrence highlighted the need for improved turbine blade materials for
advanced engines. However, the development of advanced superalloys for rocket
engine application is believed to offer only about another 80 °C growth to
about 950 °C [1].

Studies initiated by the Lewis Research Center about 10 years ago sug-
gested that tungsten wire/superalloy matrix composites offered the potential to
improve both performance and durability of SSME type turbine blades. Several



matrices (Waspaloy, Incoloy a 903, FeCrAlY, and type 316L stainless steel)
composited with commercially available W alloy (1.5% Tho ) wire were investi-
gated (2). The performance of these composites was evaluated relative to the
requirements of SSME blades and compared to MAR-Mb 246 + Hf, the current blade
material. That work showed that the experimental composites performed well.
Of the matrices investigated, Waspaloy was selected for further study because
of its higher strength at elevated temperatures (Figure 1) [2], therefore lend-
ing to better resistance to transverse loads in a unidirectional composite.
When properties were projected for composites made with a high strength W alloy
(W-4Re-HfC) wire, the composite appeared to be a viable blade material which
would be superior to currently available superalloys.

The use of W wire in the composite blade causes an increase in the density
of the blade material and some redesign of the SSME high-pressure fuel pump
blade was necessary. A two-ply, hollow composite blade was designed that
caused no increase in the centrifugal stress imposed on the turbine disk when
compared to the current solid MAR-M 246 blades.

This paper discusses progress in the development of a refractory metal
wire/high temperature alloy matrix composite for rocket engine turbine blades.
This investigation was performed to verify the strength projections made earlier
for high strength W-4Re-HfC wire. Because W-4Re-HfC wire is currently not avail-
able, another high-strength W alloy, W-24Re-HfC wire, was used in the study.

REFRACTORY METAL WIRE

Refractory metal wires in general have been reported to exhibit a good
balance of high strength and ductility, mostly as a result of the drawn grain
structure and alloying additions (3]. Initial work at the Lewis Research
Center was directed to develop a tungsten fiber reinforced superalloy (TFRS)
composite turbine blade for aircraft engines (4]. However, until better high
temperature wire became available, no large benefit appeared to be available
for rocket engine use. Recently W-24Re-0.4HfC wire (0.036 mm diameter) has
been produced in limited amounts and is being evaluated as high-temperature
composite reinforcement.

Rhenium has been shown by K1opp et al. [5] to provide ductility enhance-
ment in W/HfC alloys by decreasing the ductile-to-brittle transition tempera-
ture. The HfC addition effectively helps to increase the high temperature
tensile strength of the tungsten alloy by impeding material deformation at high
temperatures [6,7]. This occurs because high Orowan stresses are generated
during plastic flow in the structure by dislocation looping around the homoge-
neously arranged HfC dispersoids (3]. As the temperature of the wire material
increases, subgrain and dislocation mobility increases and the HfC plays an
increasing role in strengthening. Yun [3] reports that the addition of Re to
the wire alloy makes wire drawing easier by increasing the amount of mobile
subgrains in the structure. The W-24Re-HfC wire used in this study was pre-
pared under contract by a vacuum arc-melting technique. Pure W and rhenium
metal powders were blended in argon, isostatically pressed, then sintered in a
hydrogen furnace to produce 2.5 cm diameter alloy bars. Bundles of six sin-
tered bars were spot welded together to act as electrodes. The Hf and C addi-
tions were inserted as foil and graphite yarn respectively to achieve the
0.3% Hf and 250 ppm C in the desired alloy. The electrodes were vacuum arc-
melted into a water-cooled 9 cm diameter copper mold. The cast ingots were
then machined to 6.7 cm diameter, inserted into Mo extrusion cans, and extruded
through 2.9 cm extrusion dies. The Mo can was removed from the extruded bar.
Subsequently, the extruded bar was hot swaged and then drawn to the final size
of 0.36 mm.

aIncoloy is a registered tradename of Inco Alloys International.

bMAR-M is a registered tradename of the Martin Marietta Corporation.



Wire Properties and Discussion

The strengths as a function of temperature for W-24Re-HfC, W218, and MoHfC
are shown in Figure 1[3,8]. 3 The densities of W218 and W-24Re-HfC wires are
19.3 [3], (9] and 19.58 g/cm ,respectively.  MoHfC wire (density 10.2 g/cm )
also shows good potential for high-temperature composite application, with a
specific strength similar to the W-24Re-HfC wire.

The mechanical properties of different W-24Re-HfC wire lots used in this
study varied. Yun [3] observed this in evaluations of four different lots of
wire. The room temperature strength value of 3250 Mpa for one of the lots is
thought to be the highest ever observed for a refractory metal alloy (3].
The average strength of W-24Re-HfC wire is shown in Figure 2. The range of
reduction-in-area values for all W-24Re-HfC wires tested by Yun at 870 °C
was between 60 and 75%. Yun [3] also reports that recrystallization of the
W-24Re-HfC alloy occurs at 1427 °C after a 1 hr exposure. Figure 3 compares
the predicted rule-of-mixtures strength at 1093 °C of various 50 volt refrac-
tory metal wire/Waspaloy matrix composites. From this figure it can be seen
that the W-24Re-HfC wire composite is superior to MAR-M 246.

The thermal processing involved in the fabrication of the composite was
postulated to degrade the wire strength. To validate this assumption, both
W-24Re-HfC and W218 wire samples were heat treated in an argon atmosphere at
1150 °C for 30 min to simulate the thermal exposure during the HIP portion of
the composite fabrication process. After the above heat treatment, the W-24Re-Hf.0
wire tensile strength at 870 °C was 2095 MPa as compared to 2308 MPa for the
as-received wire (Figure 2). Similarly, the W218 wire tensile strength at
870 °C after heat treatment was 710 MPa compared to 930 MPa in the as-received
condition. Therefore, as was expected, the wire reinforcement exhibited a
degradation in properties from the thermal processing. This result affects the
final composite strengths. Figure 4 shows the fracture surfaces of both the
W-24Re-HfC and W218 wires tensile tested at 870 °C after heat treating at
1150 °C. In both cases, wire necking occurred after the heat treatment, with
the final failure mode being of a ductile nature with some tearing. The
reduction in area after thermal processing for the W--24Re-HfC was 74% while
that of the W218 was 67%.

MATRTX

Two principal requirements for a matrix in a unidirectional turbine blade
composite are that it has good strength and ductility. Higher strength and
good ductility provide for resistance to transverse loads and better fatigue
resistance during engine operation. Waspaloy was selected as a matrix for TFRS
investigation because of its high-temperature strength advantage over other
candidate matrices as well as its good balance of other properties (Figure 1)
[2]. The ultimate tensile strength of wrought at Waspaloy 870 °C is 524 MPa
[10]. However, arc-sprayed Waspaloy could show lower strength than wrought
Waspaloy. To determine the strength contribution arc-sprayed Waspaloy makes to
the composite, monolithic test specimens were fabricated by arc-spraying and
HIPing and tensile tested. The results verified the presumption of lower ten-
sile properties as the arc-sprayed strength of 289 MPa was only about 55% of
the published wrought strength.

COMPOSITE DEVELOPMENT

The use of high-strength wire such as W-24Re-HfC for composite reinforce-
ment is required to offer advantages over current materials for potential roc-
ket engine turbine blade application. Initially, however, a commercial lamp
filament, 218 CS W wire (W218), was used to develop the fabrication procedures
and specimen design in place of the W-24Re-HfC wire.

Single-ply TFRS monotapes were fabricated by the arc-spray process deve-
loped by the Lewis Research Center. Detailed explanation of this procedure is
given in reference 11. The single-ply monotapes fabricated in this study meas-
ured 5X99 cm. They were cut into 5X15 cm pieces for composite panel fabri-
cation. Two-ply panels containing 50 volt, unidirectional wire reinforcement
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(Figure 5) were consolidated for this investigation since a preliminary hollow
turbopump turbine blade design uses the same ply configuration. HIPing was
chosen as the method of consolidation.

Because of the stronger wire used in the present study, it appeared that
the pin shear from pin loading may occur through the matrix in the grip area at
elevated temperatures during uniaxial testing. Haynes 230 tabs (0.13 cm thick)
were therefore added to the composite test panels to increase the shear area so
that the calculated shear stress in all shear areas exceeded the calculated
breaking strength of the gage. This was effectively accomplished by adding the
tabs before consolidation so that they would become diffusion bonded to the
Waspaloy matrix, two-ply composite. Figure 6 shows a schematic of this.
Figure 7 shows both the composite panel and test specimen.

Reaction Layer

Hot isostatic pressing (HIP) resulted in full densification of the W/
Waspaloy composites. Figure 8 shows a transverse view of the W218/Waspaloy.
An intermetallic phase formed at the W218/Waspaloy interface during processing.
The thickness of the layer measured 1.6 µm and no cracking was observed.
Because the W218/Waspaloy composite was only used to characterize fabrication
and test specimen parameters, no further analysis on this material was
conducted.

HIPing of the W-24Re-HfC wire reinforced Waspaloy using similar HIP
parameters also resulted in complete densification. Figure 9 shows both high
and low magnification micrographs of a transverse section. It is evident from
the lower magnification that the wire distribution in the composite was very
good. The higher magnification, however, shows evidence of cracks in the
reaction zone of 1.62 µm thickness that formed during processing. The cracks
are believed to be detrimental to the material for rocket engine operation.
Figure 10 shows that during further heat treatment of 1080 0 C/1 hr/AC + 843 °C/
24 hr/AC + 760 °C/16 hr/AC the brittle reaction layer grew to a thickness of
3.34 ym, cracked significantly, and debonded from the wire. This heat treat-
ment is typical of those used to develop optimum strength in Waspaloy. The
cracking could decrease load transfer from matrix to wire during operation.
The heat treated composite had voids present in the wire near the reaction
zone, probably caused by the Kirkendall effect. Transmission electron micros-
copy and micro diffraction were used to identify the W-24Re-HfC/Waspaloy
reaction zone as a # phase. Scanning electron microscopy and electron disper-
sive spectroscopy identified Ni, Co, W, and Re as its principal elements.

Several approaches were taken to reduce cracking in the W-24Re-HfC/
Waspaloy composite. One method was sputtering diffusion sinks onto the wire.
Nominally 25 #m of W or Ni were deposited onto two separate wire lengths.
Tungsten was added to tie up any element diffusing from the wire to the reac-
tion zone while N deposition was to dilute Waspaloy element diffusion. Initial
results showed that neither Ni nor W completely eliminated the cracked reaction
layer. Figure 11 shows cracking still occurred with a W coating. A second
corrective approach was to modify the processing. A composite sample was
consolidated at a 70 °C lower temperature while the pressure and time were the
same as used previously. Results of this effort are promising. Figure 12
shows that even at the lower HIP temperature full consolidation of the matrix
was achieved. Figure 12 also shows that the reaction layer was free of crack-
ing. It is also noted that no Kirkendall voids existed in the wires HIPed at
the lower temperature.

Preliminary Mechanical Evaluation

Rule-of-mixtures (ROM) calculations were made using the data obtained on
the heat-treated W and W alloy wires and the arc-sprayed Waspaloy matrix. For
a nominally 50 volt composite, ROM tensile strength values at 870 °C are
1192 MPa and 496 MPa for W-24Re-HfC/Waspaloy and W218/Waspaloy respectively.
The 1192 MPa strength of the W-24Re-HfC/Waspaloy composite is about twice the
strength of the current bill of materials superalloy. Figure 13 compare ROM
predictions based on actual fiber and matrix tensile data and the actual
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composite strengths for both composites. The tensile strength of the W-24Re-HfC/
Waspaloy composite from the higher temperature HIP run was 91% of the ROM
value. The W218/Waspaloy composite strength was 107% of ROM. These values
indicate that composite fabrication does not degrade tensile behavior of the
composite beyond that which is attributed to thermal degradation of the tung-
sten alloy wire. The cracked reaction zone does not appear to degrade the
tensile strength of the composite.

CONCLUSION

Incorporating a high-temperature W-24Re-HfC alloy wire into a high-
temperature matrix holds promise for eventual turbine blade application. The
W-24Re-HfC wire investigated could be an excellent reinforcement candidate
because of its excellent strength and ductility. Processing improvements of a
Waspaloy matrix composite have reduced the cracking in the wire/matrix reaction
zone observed in the composite.
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TABLE 1.—COMPARISON OF REUSABLE ROCKET ENGINE AND

AIRCRAFT ENGINE TURBINE OPERATIONS

Item Rocket engines Aircraft engines

Fuel Hydrogen or methane Petroleum distillate

Oxidizer Oxygen Air

Pressure, psi 5500 500

Speed, rpm 36 000 to 110 000 15 000
Tip speed, ft/sec 1850 1850

Horsepower / blade 630 200 to 500

Inlet temperature, ° F 1600 to 2200 2800

Heat transfer coefficient, 54 000 700

Btu/ft2-hr-°F
Thermal transients, F/sec 32 000 100
Starts

Life, hr 55 to 700 2000 to 8000
7.5 to 100 15 000
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(a) W-24Re-HfC.

(b) W218.

25 x view of cross section
53.5 vol % wire

0.23	 0.46

Wire u
0.25 um

iL
Figure 4_—Scanning electron micrograph show

that both W-24Re-HfC and W218 have ductile
fractures at 870 °C after prior heating to 1150 °C.
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Figure 6.—Side view of HIP configuration.
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Figure 7.—HIP consolidated panel and test
specimen.

Figure 5.—Refractory metal wire reinforced super-
alloy composite panel design. Dimensions in mm. 	 Figure 8.—W218/Waspaloy reaction zone.
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Figure 10.—Cracked µ phase in W-24Re-HfC
reinforced Waspaloy composite after 1080 °C/
1 hr/AC + 843 °C/24 hr/AC + 760 °C 16 hr/AC
heat treatment.

W-24ReHfC
CZ 1200

= 800

a^

(D 400

U)

(b) Wire/matrix interface.

Figure 12.—W-24Re-HfC reinforced Waspaloy
HIPed at 70 °C lower temperature.

® Composite
test

0 W alloy wire
contribution

0 Waspaloy
contribution

218 CS

ROM Actual	 ROM	 Actual
Figure 13.—Actual strength of 50 v/o wire composites compared to rule-of-

mixtures predictions at 870 °C.

8

_J



Form Approved
REPORT DOCUMENTATION PAGE OMB No 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. 	 Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 	 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 	 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Novemher 1992 Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Progress Toward a Tungsten Alloy Wire/High Temperature Alloy
Composite Turbine Blade

WU-590-21-116. AUTHOR(S)

F.J. Ritzert and R.L. Dreshfield

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

National Aeronautics and Space Administration
Lewis Research Center E-7368
Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10, SPONSORING/MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Washington, D.C. 20546-0001 NASA TM— 105901

11. SUPPLEMENTARY NOTES

Prepared for the 1992 International Conference on Tungsten and Tungsten Alloys sponsored by the Metal Powder
Industries Federation, Washington, D.C., November 16-18, 1992. F.J. Ritzert and R.L. Dreshfield, NASA Lewis
Research Center, Cleveland, Ohio. 	 Responsible person, R.L. Dreshfield, (216) 433-3267.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Category 26

13. ABSTRACT (Maximum 200 words)

A tungsten alloy wire reinforced high temperature alloy composite is being developed for potential application as a hol-
low turbine blade for advanced rocket engine turhflpunlps. The W-24Re-HfC alloy wire used for these composite blades
provides an excellent balance of strength and wire ductilit y. Preliminary fabrication, specimen design, and characteriza-
tion studies were conducted by using commercially available W218 tungsten wire in place of the W-24Re-HfC wire.
Subsequently, two-ply, 50 vol%- composite panels using the W-24Re-HfC wire were fabricated. Tensile tests and met-
allographic studies were performed to determine the material viability. Tensile strengths of a Waspaloy matrix com-
posite at 870 °C were 90% of the value expected from rule-of-mixtures calculations. During processing of this Waspaloy
matrix composite, a brittle phase was formed at the wire/matrix interface. Circumferential wire cracks were found in this
phase. Wire coating and process evaluation efforts were performed in an attempt to solve the reaction problem. Although
problems were encountered in this study, wire reinforced high temperature alloy composites continue to show promise for
turbopump turbine blade material improvement.

14. SUBJECT TERMS 15. NUMBER OF PAGES

to
16. PRICE CODE

A02
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified

NSN 7540-01-280-5500	 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102



FOURTH CLASS MAIL IcADDRESS CORRECTION REQUESTED
U. S. MAIL

Postage and Fees Paid
National Aeronautics and
Space Administration
NASA 451

National Aeronautics and
Space Administration

Lewis Research Center
Cleveland, Ohio 44135

Official Business
Penalty for Private Use 5300

NASA


